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Random walks are studied on disordered cellular networks in two- and three-dimensional spaces with
arbitrary curvature. The coefficients of the evolution equation are calculated in terms of the structural proper-
ties of the cellular system. The effects of disorder and space curvature on the diffusion phenomena are
investigated. In disordered systems the mean squared displacement is increased at short times and decreased at
long ones, with respect to the ordered case. The asymptotic expression for the diffusion equation on hyperbolic
cellular systems relates random walks on curved lattices to hyperbolic Brownian motion.
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The simplest disordered networks are space-filling ranBut, in the present case, the diffusion is on a realistic struc-
dom partitions of space by cells. The cells are convex, irture and all the parameters in the evolution equation are
regular polygons in two dimensiori@D) and irregular poly- given in terms of the properties of the disordered cellular
hedra in 3D. Topological stability imposes the incidencestructure.
numbers at their minimum values ¢ 1 edges incident on a A d dimensional disordered cellular froth, can be viewed
vertex ind dimensions These cellular networks are also as structured in concentric layers of cells at the same topo-
known in the literature as “froths,” since the soap froth is logical distance J) around a given central cefivhere the
the archetype of such structures. The space tiled by the frottppological distance between two cells is the minimum num-
can be curved. In this case, the intrinsic dimension of théder of (d—1)-dimensional interfaces that a path must cross
cellular system ¢r) does not coincide with the dimension to connect the two cel)lsThe structure is described topologi-
(d) of the embedding space. Froths are structures whickally by two parameters per layer in two dimensiénsmber
characterize a broad class of natural systems such as pol9f cells per layer and average coordination in the Igyand
crystalline solids, foams, biological tissues, amphiphilicthree parameter per layer in three dimensisee[16] for
membranes, epithelial tissues, efd,2]. Moreover, froths  details. The number of cells in a layer at distanjcéom the
and disordered packings are duake Fig. 1 Therefore, central cell[K(j)], is related to the space curvature. One
amorphous materials, granular solids, metallic glasses, etdinds asymptoticallyK(j)ej% %, whered; is the intrinsic
have structures which are dual to frofts4]. dimension;d; coincides with the dimensiod of the embed-

Many theoretical works, experiments, and computer simuding space in Euclidean frothgtilings of flat spaces
lations have been devoted to the study of random walks anwhereasd;>d in the hyperbolic caséilings of negatively
transport phenomena on disordefée-8] and fracta[9-15  curved spacgsandd;<<d in the elliptic one(tilings of posi-
structures. Random walks on Euclidean froths are a realistitively curved spacgsA special case, discussed|ib6], is a
models for diffusion in disordered systems, for signal propa<lass of hyperbolic froths withk(j)oexp(ej). Here the in-
gation in granular media, and may be relevant to the evolutrinsic dimension diverges.
tion of natural foams and polycrystalline aggregates. Ran- Suppose the tiling is shell-structured inflatabi8S))
dom walks on hyperbolic or elliptic froths can model around the central cellin SSI froths any cell in layerj]
transport phenomena in curved spaces. has neighbors in layerj 1), (j), and (+1). See Fig. 1

In the present model, the walker starts at tirsed froma  and[16] for details) While, the number of paths connecting
given cell, and at each time step, jumps with equal probabildifferent layers can be more easily calculated in SSI froths,
ity to one of the neighboring cells. The radial and angularthe extension to the general case of non-SSI froths is
components of the motion with respect to the starting cell arstraightforward. Let the walker start at the central cell at
decoupled. The radial component results the same as for the=0. Consider at time, the walker to be in a cell of layer
spherically symmetric model introduced recentlyir1,12. (j) (supposing the cells in laygrindistinguishablg At time

t+1 it has moved outward to layefj{1) or (for j>0)
inward to layer {—1) or stayed within the same layey)(
*Electronic address: tomaso@fresnel.u-strasbg.fr with probabilitiesp,yi(j) or pin(Jj) Or Psiayl]), respectively.
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are separated by a system of faces which tile a spherical
surface: the “shell network’[16]. The number of paths be-
tween two successive layerp (@nd (j + 1) is proportional to

the number of facets of the shell network between these lay-
ers. This number is [X(j)+K(j+1)—8]/[n(j)—4] [16],
wheren(j) is the average number of edges per face in the
shell network. We have, therefore,

. 2 K(j)+K(j+1)-8
Pl D=5 — -4

2 K()+K(-1)-8
Prl)= 350 G- 1-4

(for j=1),

()

where we definedK(0)=2 and N3(j)=f(j)K(j), with
f(j) the average number of faces per cell in laygr. (For
j=0, we havep,,(0)=1 andp;,(0)=0.

A quantity of interest is the probabilitil that the walker
ever returns to the origin. This quantity is associated with the
mean time spent at the origii=(0)==;_,P(0t)] via the
relation,IT=1—[1/F(0)] [18]. From Eq.(1) and using Egs.
(2) and(3), we obtain,

packing

. . 1 1
triangulation _1_ _1_

g Mm=1 Foy =2 - 1 A
. " 1+K(D)E

FIG. 1. A froth is a random partition of space by cels. NG Pout))
Topological stability imposes minimal incidence numbhree ) o ) -
edges incident on a vertex in two dimensiprigroths are the dual  This expression is valid for any froth tiling an unbounded
structures of disordered packin@®. Such structures can be viewed topological manifold. The quantit}y(j)pou(]j) is related to
as organized in concentric layers of cells at the same topologicdhe properties of the structure around the central cell, and
distance {) from a given central cellj=0). Some cell§hatched asymptotically scales ak(j) [see Egs(2) and (3)]. In a
in (@] have neighbors in the internal layer but not in the externalcellular system with intrinsic dimensiody, the number of
one and are topological “defects” in the layered structure. cells per layer has the asymptotic behawWdjj)oj% 1, thus

Ny(i)Pouti)~K(j)~j% 1. Substituting into Eq.(4), we

Note that, pin(j) + Pout(}) + Pstay(J) =1, since the walker obtainII=1 for d;<2, andII<1 for d;>2. This result,
must move at each time step. The probabiktj,t) of find-  also holds for random walks on regular lattices, fractals and

ing the walker in layer |) at timet is trees[18], indicating the universality of this critical behavior.
. . . . . Figure 2 showdl vs d;, for two dimensional SSI froths
P(J, 1) = Pstay(})P(j,t=1) + pou( —1)P(j —1t—1) with K(j)=K(1)j% 1.
+pin(j+1)P(j+1t—1), for j=1 (1) A quantity generally used to describe diffusion is the

mean squared displacemefit®)(t)=3{_,j’P(j,t). The
and, P(0Ot)=p;,(1)P(1t—1). The initial conditions are time-dependent diffusion coefficieB(t) is associated with
P(j,0)=6j 0. The probabilityp,,(]) is proportional to the this quantity by the relation (2D(t):((9/at)<r2>, and the
number of paths connecting laygn (with layer (j+1). This  usual diffusion coefficienD” is the limit of D(t) at infinite
number is equal to the number of interfadesiges in two time. Equation(1) implies
dimensions and facets in three dimensjossparating the .
two layers. Analogously, the probability;,(j) is propor- . ) ) _
tional to the number of interfaces between laygy and <r2>(t+l)—<r2>(t)=lzo {Pout(3) + Pin(i) + 2j [ Pout(i)
(j—1). In two dimensions, the number of edges separating

layers () and (+1) isK(j)+K(j+1) (see Fig. 1 Thus, —pin(DIP3 ). )
) 1 ) ) When, j>1, and the parametee{j)=(e), f(j)={(f), and
pout(l):m[K(l)’LK(l’Ll)] n(j)=(n") are independent of (this is the expected
1 (for j=1), (2 asymptotic behavigy Egs.(2) and (3) give,
pin(J)Zm[K(JHK(J—l)] (e)—2 o e
[and psay(j) =1~ Pout(i) —Pin(i) =2/€(j)]. In EQ. (2) we  p_ (i) +Pin(i)=1—Pstayi) = (e =2Cy.
defined,K(0)=0 andA5(j)=e(j)K(j), with e(j) the aver- (f)—6 for d—3
age number of edges per cell in layg).(For j=0, one has (f) B

Pout(0)=1 and p;,(0)=0. In three dimensions the layers (6)
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FIG. 2. Probabilityll that the walker ever returns to the origin
for several values of the intrinsic dimensidp. The walker always
returns to the origin whew;<2, whereas the probability is less
than 1 and decreases with whend¢>2. This critical behavior is
independent of the details of the structufEhe line is a guide for
the eyes.

For d; finite, j[pout(i) —Pin(j)1=(d;—21)Cqy. Thus, from
Eq. (5),

(r2)(t)~2d; Cyt. )

The diffusion coefficient is thereford)*=(d;/d)Cqy. Nu-
merical solutions of Eq(l) for two-dimensional and three-
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FIG. 3. Mean squared displacemefi) overt vs time for
disordereda) and orderedb) cellular lattices. The average distance
of the walker from the starting point js=(r2)*2. At short distances
(j<5) the walker diffuses faster in the disordered than in the cor-
responding ordered lattice. Then diffusion in disordered lattice
slows down to reach an asymptotic regime where the walker propa-
gates more slowly in the disordered system than in the ordered one.

with # the average number of interfaces added by a defect to
the shell between two successive layefypically,
1<%<1.3 in two dimensiong17]). Therefore, asymptoti-
cally, Egs.(7) and (6) can be extended to the non-SSI case
by multiplying expression (6) by the factor
[1- 6+ (7n6/2)]. The same result holds in three dimensions.
Non-SSI defects have important effects on the froth struc-
ture. In particular, in two-dimensional non-SSI Euclidean
froths, the number of cells per layer increases linearly with

dimensional structures with different intrinsic dimensionsthe distance K(j)=Cj+B, with slope C~9 [17]. This
and coordination numbers give diffusion coefficients in veryslope is higher than th€=2= expected from simple geo-

good agreement with Eq7). Note that,(r?) in Eq. (7) is
expressed in term of topological distancé$.(The metric
guantities can be retrieved by multiplyirjgby the average
asymptotic distance, between layers. For instance, in the
hexagonal Iatticepo=(\/§/2)a, with a the lattice spacing.
From Eq.(7), one gets, thereforép?)=p3(r2)=at, which

metrical considerations and ti&=6 of the SSI hexagonal
lattice. Larger increments in the number of cells per layer,
correspond tdaster diffusion(more paths outwapd On the
other hand, in typical two-dimensional disordered systems,
[1-6+(7ndl2)]<1, which indicates asymptoticallglower
diffusionin non-SSi froths. These two opposite behaviors are

is the known expression for the mean squared displacemenbt contradictory. Indeed, foj>1, the ratio between the

in the hexagonal lattice. The linear dependencéréf on t

in Eq. (7), indicates normal diffusion. The spectral dimen-
sion ds (defined from the exponentgr2)~td/d and
P(0t)~t~ 92 [19]) coincides with the intrinsic dimension
ds.
In disordered froths, topological non-SSI defects are al
ways present. Defects, in layey)( are cells which have no
neighbors in layer j(+1) (see Fig. 1 andl16]). Asymptoti-
cally, the number of defective cells in layej) (is a fraction

6 of the total number of cellK(j) (typically, 0.1<6<0.2 in
two dimensions[17]). In two dimensions, the number of
paths connecting layerj Y with nondefective cells in layer
(j+1) is (1-8)[K(j)+K(j+1)] (see Fig. 1, whereas, the
number of paths ending in a defective cell K (j+1),

number of paths in successive layers depends only on the
exponent oK(j) vsj (i.e., the intrinsic dimensior-1), and

not on the slope. Therefore, we expect the diffusion in dis-
ordered structures, compared with ordered SSI lattices, to be
faster at small distancepvhere the slope oK(j) is rel-

evani and thenslower at large distancepwvhere only the

exponent ofK(j) is relevant. Figure 3 showsgr?)/t, calcu-
lated from Eq.(1), for a non-SSI two-dimensional Euclidean
froth 3(a) and for the SSI hexagonal latticéb3.

A special behavior ofr?) is obtained for the 2D SSI
hyperbolic froth, studied in Ref[16], which has e(j)
=(e)>6 and K(j)=C exp(gj), with ¢=cosh (e)—4)/
2]. In this case, from Eqg2), (3), and(5), one derives the
asymptotic expression
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—6)((e)—2 2pdt 2
<r2>(t)”(<e> <é(><2e> )tz for t>1. 8 P(p,7)= q P 71 d;726XP __pg_ . (10
r _f 4_OCdT 4_OCdT
2 T T
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Numerical solutions of Eq(l) for SSI two-dimensional hy-
perbolic froths with variouge)>6, give time-dependent dif-  The probabilityP(p,7) increases withp until a maximum at
fusion coefficient in excellent agreement with express®n [, —12(d;—1)(p3/7,)Cq7]*/?, then decreases exponen-
The quadratic exponent in E) indicates ballistic diffusion tially. From solution(10), the mean squared displacement is
andd,=2d. (r2)=5(pl 70) P(p,7)dp=2dy(p/79)Cqr, as in Eq.(7).

We now write the evolution equatiofl) in the continu- A previous papef16], described a class of two- and
ous limit. Introduce the continuous variables=jp, and  three-dimensional hyperbolic SS| froths  where,
=179, Wherep, is the average distance between two layersK (p) = CsinH ¢(p/po)], with ¢ =cosh (s/2) a constant asso-
and 7 is the average time between two jumps. In theciated with the space curvatufa simple two-dimensional
asymptotic limit (= p/po— andt=7/7y—x), when the casesp=—k, with k the Gaussian curvature, hers;2
average topological arrangements of the cells is independeandk<0). For these froths, the evolution equati@) takes
of the layer number, Eq1) can be written in the continuous the form

form 2
d b Py, A0 5
ar (p’T)_ToCd(?p (9,0 (P*T)

7 (P,T)—TO 990l 7p (p,7)

4 1 9 }
MW%K(P) P(p,m ¢, (9

4 o p
572) % COt?‘(ch”P(p,T)J. (11

Equation(11) is the diffusion equation in hyperbolic spaces
wheres is the inflation paramete(s=(€)—4 in two dimen- with constant, negative curvatuf&s,20. Here the equation
has been obtained from a tessellation model, linking there-

sions, ands=3((f)—6)((nN)—4)—2 in three dimensions Co DLk . . :
[16]), which is associated with the curvature of the manifold '€ diffusion in curved lattices to hyperbolic Brownian mo-

tiled by the froth 6= 2 in Euclideans>2 in hyperbolic, and tion. At large distances, the coefficient in thg square brack_ets
s<2 in elliptic frothg. Expression(9) is the diffusion equa- n I_Eq.(ll) tends to_a ponstant, and the_soll_mon IS a Gaussian
tion for ad-dimensional spherically symmetric system writ- which moves ballistically outwa_rd with .'ts maximum at
ten in polar coordinates. All the information about the cellu-Pmax=[4/(S+2)1@(po/ 70)Cq. This behavior is consistent
lar structure, its intrinsic dimension, and its disorder, areWIth Eq.(8).

contained in the term in square brackets and in the parameter The author acknowledges discussions and correspondence
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