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Random walks are studied on disordered cellular networks in two- and three-dimensional spaces with
arbitrary curvature. The coefficients of the evolution equation are calculated in terms of the structural proper-
ties of the cellular system. The effects of disorder and space curvature on the diffusion phenomena are
investigated. In disordered systems the mean squared displacement is increased at short times and decreased at
long ones, with respect to the ordered case. The asymptotic expression for the diffusion equation on hyperbolic
cellular systems relates random walks on curved lattices to hyperbolic Brownian motion.
@S1063-651X~97!16605-3#

PACS number~s!: 66.30.2h, 05.40.1j, 61.43.2j
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The simplest disordered networks are space-filling r
dom partitions of space by cells. The cells are convex,
regular polygons in two dimensions~2D! and irregular poly-
hedra in 3D. Topological stability imposes the inciden
numbers at their minimum values (d11 edges incident on a
vertex in d dimensions!. These cellular networks are als
known in the literature as ‘‘froths,’’ since the soap froth
the archetype of such structures. The space tiled by the f
can be curved. In this case, the intrinsic dimension of
cellular system (df) does not coincide with the dimensio
(d) of the embedding space. Froths are structures wh
characterize a broad class of natural systems such as
crystalline solids, foams, biological tissues, amphiph
membranes, epithelial tissues, etc.,@1,2#. Moreover, froths
and disordered packings are dual~see Fig. 1!. Therefore,
amorphous materials, granular solids, metallic glasses,
have structures which are dual to froths@3,4#.

Many theoretical works, experiments, and computer sim
lations have been devoted to the study of random walks
transport phenomena on disordered@5–8# and fractal@9–15#
structures. Random walks on Euclidean froths are a real
models for diffusion in disordered systems, for signal pro
gation in granular media, and may be relevant to the evo
tion of natural foams and polycrystalline aggregates. R
dom walks on hyperbolic or elliptic froths can mod
transport phenomena in curved spaces.

In the present model, the walker starts at timet50 from a
given cell, and at each time step, jumps with equal proba
ity to one of the neighboring cells. The radial and angu
components of the motion with respect to the starting cell
decoupled. The radial component results the same as fo
spherically symmetric model introduced recently in@11,12#.
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But, in the present case, the diffusion is on a realistic str
ture and all the parameters in the evolution equation
given in terms of the properties of the disordered cellu
structure.

A d dimensional disordered cellular froth, can be view
as structured in concentric layers of cells at the same to
logical distance (j ) around a given central cell~where the
topological distance between two cells is the minimum nu
ber of (d21)-dimensional interfaces that a path must cro
to connect the two cells!. The structure is described topolog
cally by two parameters per layer in two dimensions~number
of cells per layer and average coordination in the layer!, and
three parameter per layer in three dimensions~see@16# for
details!. The number of cells in a layer at distancej from the
central cell @K( j )#, is related to the space curvature. O
finds asymptotically,K( j )} j df21, wheredf is the intrinsic
dimension;df coincides with the dimensiond of the embed-
ding space in Euclidean froths~tilings of flat spaces!,
whereas,df.d in the hyperbolic case~tilings of negatively
curved spaces! anddf,d in the elliptic one~tilings of posi-
tively curved spaces!. A special case, discussed in@16#, is a
class of hyperbolic froths withK( j )}exp(wj). Here the in-
trinsic dimension diverges.

Suppose the tiling is shell-structured inflatable~SSI!
around the central cell.„In SSI froths any cell in layer (j )
has neighbors in layer (j21), (j ), and (j11). See Fig. 1
and@16# for details.… While, the number of paths connectin
different layers can be more easily calculated in SSI frot
the extension to the general case of non-SSI froths
straightforward. Let the walker start at the central cell
t50. Consider at timet, the walker to be in a cell of laye
( j ) ~supposing the cells in layerj indistinguishable!. At time
t11 it has moved outward to layer (j11) or ~for j.0)
inward to layer (j21) or stayed within the same layer (j ),
with probabilitiespout( j ) or pin( j ) or pstay( j ), respectively.
6233 © 1997 The American Physical Society
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Note that, pin( j )1pout( j )1pstay( j )51, since the walker
must move at each time step. The probabilityP( j ,t) of find-
ing the walker in layer (j ) at time t is

P~ j ,t !5pstay~ j !P~ j ,t21!1pout~ j21!P~ j21,t21!

1pin~ j11!P~ j11,t21!, for j>1 ~1!

and, P(0,t)5pin(1)P(1,t21). The initial conditions are
P( j ,0)5d j ,0 . The probabilitypout( j ) is proportional to the
number of paths connecting layer (j ) with layer (j11). This
number is equal to the number of interfaces~edges in two
dimensions and facets in three dimensions! separating the
two layers. Analogously, the probabilitypin( j ) is propor-
tional to the number of interfaces between layer (j ) and
( j21). In two dimensions, the number of edges separa
layers (j ) and (j11) is K( j )1K( j11) ~see Fig. 1!. Thus,

pout~ j !5
1

N2~ j !
@K~ j !1K~ j11!#

pin~ j !5
1

N2~ j !
@K~ j !1K~ j21!#

~ for j>1!, ~2!

@and pstay( j )512pout( j )2pin( j )52/e( j )#. In Eq. ~2! we
defined,K(0)50 andN2( j )5e( j )K( j ), with e( j ) the aver-
age number of edges per cell in layer (j ). For j50, one has
pout(0)51 and pin(0)50. In three dimensions the layer

FIG. 1. A froth is a random partition of space by cells~a!.
Topological stability imposes minimal incidence number~three
edges incident on a vertex in two dimensions!. Froths are the dua
structures of disordered packings~b!. Such structures can be viewe
as organized in concentric layers of cells at the same topolog
distance (j ) from a given central cell (j50). Some cells@hatched
in ~a!# have neighbors in the internal layer but not in the exter
one and are topological ‘‘defects’’ in the layered structure.
g

are separated by a system of faces which tile a sphe
surface: the ‘‘shell network’’@16#. The number of paths be
tween two successive layers (j ) and (j11) is proportional to
the number of facets of the shell network between these
ers. This number is 2@K( j )1K( j11)28#/@n( j )24# @16#,
wheren( j ) is the average number of edges per face in
shell network. We have, therefore,

pout~ j !5
2

N3~ j !

K~ j !1K~ j11!28

n~ j !24

pin~ j !5
2

N3~ j !

K~ j !1K~ j21!28

n~ j21!24

~ for j>1!,

~3!

where we defined:K(0)52 and N3( j )5 f ( j )K( j ), with
f ( j ) the average number of faces per cell in layer (j ). For
j50, we havepout(0)51 andpin(0)50.
A quantity of interest is the probabilityP that the walker

ever returns to the origin. This quantity is associated with
mean time spent at the origin@F(0)5( t50

` P(0,t)# via the
relation,P512@1/F(0)# @18#. From Eq.~1! and using Eqs.
~2! and ~3!, we obtain,

P512
1

F~0!
512

1

11K~1!( j51
`

1

Nd~ j !pout~ j !

. ~4!

This expression is valid for any froth tiling an unbound
topological manifold. The quantityNd( j )pout( j ) is related to
the properties of the structure around the central cell,
asymptotically scales asK( j ) @see Eqs.~2! and ~3!#. In a
cellular system with intrinsic dimensiondf , the number of
cells per layer has the asymptotic behaviorK( j )} j df21, thus
Nd( j )pout( j );K( j ); j df21. Substituting into Eq.~4!, we
obtain P51 for df<2, andP,1 for df.2. This result,
also holds for random walks on regular lattices, fractals a
trees@18#, indicating the universality of this critical behavio
Figure 2 showsP vs df , for two dimensional SSI froths
with K( j )5K(1) j df21.

A quantity generally used to describe diffusion is t
mean squared displacement^r 2&(t)5( j50

` j 2P( j ,t). The
time-dependent diffusion coefficientD(t) is associated with
this quantity by the relation 2dD(t)5(]/]t)^r 2&, and the
usual diffusion coefficientD` is the limit ofD(t) at infinite
time. Equation~1! implies

^r 2&~ t11!2^r 2&~ t !5(
j50

`

$pout~ j !1pin~ j !12 j @pout~ j !

2pin~ j !#%P~ j ,t !. ~5!

When, j@1, and the parameterse( j )5^e&, f ( j )5^ f &, and
n( j )5^nN& are independent ofj ~this is the expected
asymptotic behavior!, Eqs.~2! and ~3! give,

pout~ j !1pin~ j !512pstay~ j !5H ^e&22

^e&
for d52

^ f &26

^ f &
for d53

52Cd .

~6!
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For df finite, j @pout( j )2pin( j )#5(df21)Cd . Thus, from
Eq. ~5!,

^r 2&~ t !;2df Cdt. ~7!

The diffusion coefficient is therefore,D`5(df /d)Cd . Nu-
merical solutions of Eq.~1! for two-dimensional and three
dimensional structures with different intrinsic dimensio
and coordination numbers give diffusion coefficients in ve
good agreement with Eq.~7!. Note that,^r 2& in Eq. ~7! is
expressed in term of topological distances (j ). The metric
quantities can be retrieved by multiplyingj by the average
asymptotic distancer0 between layers. For instance, in th
hexagonal lattice,r05(A3/2)a, with a the lattice spacing.
From Eq.~7!, one gets, therefore,^r2&5r0

2^r 2&5a2t, which
is the known expression for the mean squared displacem
in the hexagonal lattice. The linear dependence of^r 2& on t
in Eq. ~7!, indicates normal diffusion. The spectral dime
sion ds „defined from the exponentŝr 2&;tds /df and
P(0,t);t2ds/2 @19#… coincides with the intrinsic dimensio
df .

In disordered froths, topological non-SSI defects are
ways present. Defects, in layer (j ), are cells which have no
neighbors in layer (j11) ~see Fig. 1 and@16#!. Asymptoti-
cally, the number of defective cells in layer (j ) is a fraction
d of the total number of cellsK( j ) ~typically, 0.1,d,0.2 in
two dimensions@17#!. In two dimensions, the number o
paths connecting layer (j ) with nondefective cells in laye
( j11) is (12d)@K( j )1K( j11)# ~see Fig. 1!, whereas, the
number of paths ending in a defective cell ishdK( j11),

FIG. 2. ProbabilityP that the walker ever returns to the orig
for several values of the intrinsic dimensiondf . The walker always
returns to the origin whendf<2, whereas the probability is les
than 1 and decreases withdf whendf.2. This critical behavior is
independent of the details of the structure.~The line is a guide for
the eyes.!
nt

l-

with h the average number of interfaces added by a defec
the shell between two successive layers~typically,
1,h,1.3 in two dimensions@17#!. Therefore, asymptoti-
cally, Eqs.~7! and ~6! can be extended to the non-SSI ca
by multiplying expression ~6! by the factor
@12d1(hd/2)#. The same result holds in three dimension
Non-SSI defects have important effects on the froth str
ture. In particular, in two-dimensional non-SSI Euclide
froths, the number of cells per layer increases linearly w
the distance,K( j )5Cj1B, with slope C;9 @17#. This
slope is higher than theC52p expected from simple geo
metrical considerations and theC56 of the SSI hexagona
lattice. Larger increments in the number of cells per lay
correspond tofaster diffusion~more paths outward!. On the
other hand, in typical two-dimensional disordered syste
@12d1(hd/2)#,1, which indicates asymptotically,slower
diffusionin non-SSI froths. These two opposite behaviors
not contradictory. Indeed, forj@1, the ratio between the
number of paths in successive layers depends only on
exponent ofK( j ) vs j ~i.e., the intrinsic dimension21), and
not on the slope. Therefore, we expect the diffusion in d
ordered structures, compared with ordered SSI lattices, to
faster at small distances@where the slope ofK( j ) is rel-
evant# and thenslower at large distances@where only the
exponent ofK( j ) is relevant#. Figure 3 showŝr 2&/t, calcu-
lated from Eq.~1!, for a non-SSI two-dimensional Euclidea
froth 3~a! and for the SSI hexagonal lattice 3~b!.

A special behavior of̂ r 2& is obtained for the 2D SS
hyperbolic froth, studied in Ref.@16#, which has e( j )
5^e&.6 and K( j )5C exp(wj), with w5cosh21@(^e&24)/
2#. In this case, from Eqs.~2!, ~3!, and ~5!, one derives the
asymptotic expression

FIG. 3. Mean squared displacement^r 2& over t vs time for
disordered~a! and ordered~b! cellular lattices. The average distanc
of the walker from the starting point isj.^r 2&1/2. At short distances
( j,5) the walker diffuses faster in the disordered than in the c
responding ordered lattice. Then diffusion in disordered latt
slows down to reach an asymptotic regime where the walker pro
gates more slowly in the disordered system than in the ordered
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^r 2&~ t !;
~^e&26!~^e&22!

^e&2
t2 for t@1. ~8!

Numerical solutions of Eq.~1! for SSI two-dimensional hy-
perbolic froths with variouŝe&.6, give time-dependent dif
fusion coefficient in excellent agreement with expression~8!.
The quadratic exponent in Eq.~8! indicates ballistic diffusion
andds52df .

We now write the evolution equation~1! in the continu-
ous limit. Introduce the continuous variablesr5 jr0 and
t5tt0, wherer0 is the average distance between two lay
and t0 is the average time between two jumps. In t
asymptotic limit (j5r/r0→` and t5t/t0→`), when the
average topological arrangements of the cells is indepen
of the layer number, Eq.~1! can be written in the continuou
form

]

]t
P~r,t!5

r0
2

t0
Cd

]

]rH ]

]r
P~r,t!

2F 4

~s12!

1

K~r!

]

]r
K~r!GP~r,t!J , ~9!

wheres is the inflation parameter„s5^e&24 in two dimen-
sions, ands5 1

2(^ f &26)(^nN&24)22 in three dimensions
@16#…, which is associated with the curvature of the manifo
tiled by the froth (s52 in Euclidean,s.2 in hyperbolic, and
s,2 in elliptic froths!. Expression~9! is the diffusion equa-
tion for ad-dimensional spherically symmetric system wr
ten in polar coordinates. All the information about the cel
lar structure, its intrinsic dimension, and its disorder, a
contained in the term in square brackets and in the param
Cd . For a random cellular system with finite intrinsic dime
sion, df we have asymptotically,K(r);rdf21 and s→2.
Therefore the coefficient inside the square brackets in Eq~9!
becomes (df21)/r, and Eq.~9! has the solution
g

s

s

nt

-
e
ter

P~r,t!5
2rdf21

GS df2 D S 4r0
2

t0
Cdt D df /2 expS 2

r2

4
r0
2

t0
CdtD . ~10!

The probabilityP(r,t) increases withr until a maximum at
rmax5@2(df21)(r0

2/t0)Cdt#1/2, then decreases expone
tially. From solution~10!, the mean squared displacement
^r 2&.*0

`(r2/t0)P(r,t)dr52df(r0
2/t0)Cdt, as in Eq.~7!.

A previous paper@16#, described a class of two- an
three-dimensional hyperbolic SSI froths wher
K(r)5Csinh@w(r/r0)#, with w5cosh21(s/2) a constant asso
ciated with the space curvature~in simple two-dimensional
casesw5A2k, with k the Gaussian curvature, here,s.2
andk,0). For these froths, the evolution equation~9! takes
the form

]

]t
P~r,t!5

r0
2

t0
Cd

]

]rH ]

]r
P~r,t!

2F 4

~s12!

w

r0
cothS w

r

r0
D GP~r,t!J . ~11!

Equation~11! is the diffusion equation in hyperbolic space
with constant, negative curvature@15,20#. Here the equation
has been obtained from a tessellation model, linking the
fore diffusion in curved lattices to hyperbolic Brownian m
tion. At large distances, the coefficient in the square brack
in Eq. ~11! tends to a constant, and the solution is a Gauss
which moves ballistically outward with its maximum a
rmax5@4/(s12)#w(r0/t0)Cdt. This behavior is consisten
with Eq. ~8!.
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